Origami, estrategia didáctica para mejorar la enseñanza de la geometría
PDF

Palabras clave

Origami
Estrategia
Enseñanza
GeometríaOrigami
Strategy

Cómo citar

Origami, estrategia didáctica para mejorar la enseñanza de la geometría. (2024). Revista De Investigación Científica Y Tecnológica, 5(1), 4-18. https://revista.espy.cloud/rict/article/view/255

Resumen

La geometría es uno de los componentes principales en la formación en matemáticas debido a que favorece el desarrollo del pensamiento espacial en los estudiantes; no obstante, la gran variedad de distractores que rodean a los discentes en la actualidad, precisa que en las aulas de clases se ponga en práctica estrategias didácticas versátiles, dinámicas, motivadoras e interesantes para los estudiantes. Esta investigación tuvo como propósito analizar la incidencia del origami como estrategia didáctica para mejorar la enseñanza de la geometría. El estudio se desarrolló por medio de una Investigación – Acción, puesto que se indagó sobre la capacidad de los estudiantes para el aprendizaje de la geometría mediante la utilización del origami, así como también de las dificultades o debilidades de algunos de los educandos que participaron en el proyecto. En este orden de ideas, el docente fue partícipe del proceso, como agente facilitador del aprendizaje, a partir de la asesoría y seguimiento en el desarrollo de cada uno de los talleres. A su vez, se tomó como referencia un Enfoque Cualitativo puesto que se describen los hallazgos tanto en los grupos experimental como de control. La estrategia se desarrolló con estudiantes de grado sexto de la Escuela Normal Superior Santiago de Tunja (Boyacá) a partir de la aplicación de talleres de origami consistentes en modelos bidimensionales y tridimensionales, encaminados a la enseñanza de conceptos fundamentales de geometría. El análisis del impacto de la aplicación de la estrategia se lleva a cabo mediante grupos experimentales y de control, a los cuales se les aplica un pretest y post-test. Los resultados señalan que el origami como estrategia didáctica, incide significativamente en el aprendizaje de la geometría y en la consolidación de conceptos geométricos dado que la mayoría de los estudiantes del grupo experimental mostró avances en temas como mediatrices, bisectrices angulares, triángulos, polígonos, congruencia y simetría.

PDF

Referencias

Akayuure, P., Asiedu-Addo, S. K., & Alebna, V. (2016). Investigating the Effect of Origami Instruction on Preservice Teachers’ Spatial Ability and Geometric Knowledge for Teaching. International Journal of Education in Mathematics Science and Technology, 4(3). https://doi.org/10.18404/ijemst.78424

Arici, S., & Aslan-Tutak, F. (2013). USING ORIGAMI TO ENHANCE GEOMETRIC REASONING AND ACHIEVEMENT. https://cerme8.metu.edu.tr/wgpapers/WG4/WG4_Arici.pdf

Arici, S., & Aslan-Tutak, F. (2015). THE EFFECT OF ORIGAMI-BASED INSTRUCTION ON SPATIAL VISUALIZATION, GEOMETRY ACHIEVEMENT, AND GEOMETRIC REASONING. International Journal of Science and Mathematics Education, 13(1), 179–200. https://doi.org/10.1007/s10763-013-9487-8

Arslan, O., & Işıksal-Bostan, M. (2016). Turkish Prospective Middle School Mathematics Teachers’ Beliefs and Perceived Self-Efficacy Beliefs Regarding the Use of Origami in Mathematics Education. EURASIA Journal of Mathematics, Science & Technology Education, 13(6), 1533–1548. https://doi.org/10.12973/eurasia.2016.1243a

Asuman, & Duatepe-Paksu. (2017). Constructing a rhombus through paper folding. International Journal of Mathematical Education in Science and Technology, 48(5), 763–767. https://doi.org/10.1080/0020739X.2017.1282048

Avilés, P. (2016). USO DE LA DIDÁCTICA DEL PLEGADO DE PAPEL, COMO HERRAMIENTA DE APOYO EN LA ENSEÑANZA DE LOS CONTENIDOS DE LA GEOMETRÍA PARA ESTUDIANTES DEL 10° AÑO DE EDUCACIÓN GENERAL BÁSICA, DE LA UNIDAD EDUCATIVA BEST DEL CANTÓN VINCES.

Báez, R., & Iglesias, M. (2007). PRINCIPIOS DIDÁCTICOS A SEGUIR EN EL PROCESO DE ENSEÑANZA Y APRENDIZAJE DE LA GEOMETRÍA EN LA UPEL “EL MÁCARO.” Enseñanza de La Matemática, 12 al 16, 20. https://funes.uniandes.edu.co/14702/1/Baez2007Principios.pdf

Barrantes, M., & Zapata, M. (2015). Obstáculos y errores en la enseñanza-aprendizaje de las figuras geométricas. Campo Abierto. Revista de Educación, 27(1), 55–71. https://relatec.unex.es/revistas/index.php/campoabierto/article/view/1985

Cipoletti, & Wilson, N. (1989). Turning origami into the language of mathematics. 26–31. https://doi.org/10.5951/MTMS.10.1.0026

Gamboa, R., & Ballestero, E. (2009). Algunas reflexiones sobre la didáctica de la geometría. Cuadernos de Investigación y Formación En Educación Matemática, 0(5), 113–136. https://revistas.ucr.ac.cr/index.php/cifem/article/view/6915

Gamboa, R., & Ballestero, E. (2010). La enseñanza y aprendizaje de la geometría en secundaria, la perspectiva de los estudiantes. Revista Electrónica Educare, 14(2), 125–142. https://doi.org/10.15359/ree.14-2.9

Godino, J. (2005). Didáctica de las Matemáticas para Maestros. In American Journal of Health-System Pharmacy (Vol. 62, Issue 18). GAMI, S. L. Fotocopias. https://doi.org/10.2146/ajhp040346.p2

Golan, M. (2011). Origametria and the van Hiele Theory of Teaching Geometry. https://www.origami.co.il/imgs/site/ntext/12-Golan.pdf

Goncalves, R. (2006). ¿POR QUÉ LOS ESTUDIANTES NO LOGRAN UN NIVEL DE RAZONAMIENTO EN LA GEOMETRÍA? Ciencias de La Educación, 1(27), 16. https://servicio.bc.uc.edu.ve/educacion/revista/volIn27/27-5.pdf

Gürbüz, M. Ç., Ağsu, M., & Güler, H. K. (2018). Investigating Geometric Habits of Mind by Using Paper Folding. Acta Didactica Napocensia, 11(3–4), 157–174. https://doi.org/10.24193/adn.11.3-4.12

Hernández, R., Fernández, C., & Baptista, P. (2014). Metodología de la investigación. In Journal of Chemical Information and Modeling (Vol. 53, Issue 9). https://doi.org/10.1017/CBO9781107415324.004

Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, P. (2014). Metodología de la investigación. McGraw-Hill Education. https://highered.mheducation.com/sites/1456223968/student_view0/capitulos_1_a_13.html

Lombardo, L. (1983). La matemática de Pitágoras a Newton. www.librosmaravillosos.com

McKinsey&Company. (2007). Cómo hicieron los sistemas educativos con mejor desempeño del mundo para alcanzar sus objetivos. McKinsey, 41, 1–48. https://orton.catie.ac.cr/cgi-bin/wxis.exe/?IsisScript=EARTH.xis&method=post&formato=2&cantidad=1&expresion=mfn=003423

Ministerio de Educación Nacional de Colombia. (1997). Lineamientos curriculares de Matemáticas. https://www.mineducacion.gov.co/1621/articles-89869_archivo_pdf9.pdf

Ministerio de Educación Nacional de Colombia. (2006). Estándares Básicos de Competencias en Matemáticas. Magisterio, 47–48. https://doi.org/958-691-290-6

Ministerio de Educación Nacional de Colombia. (2015). Pruebas Saber. https://www.mineducacion.gov.co/1621/w3-article-244735.html

Montessori, M. (1982). El niño. El secreto de la Infancia (Primea Edi). Editorial Diana. https://www.academia.edu/35866870/I_niño_el_secreto_de_la_infancia

Mourshed, M., Chijioke, C., & Barber, M. (2012). Cómo continúan mejorando los sistemas educativos de mayor progreso en el mundo (CINDE (ed.); No. 61; Primera Ed, ISSN: 0718-6002). https://200.6.99.248/~bru487cl/files/McK61.pdf

Paredes, Z., Iglesias, M., & Ortiz, J. (2007). SISTEMAS DE CÁLCULO SIMBÓLICO Y RESOLUCIÓN DE PROBLEMAS EN LA FORMACIÓN INICIAL DE DOCENTES DE MATEMÁTICA. Enseñanza de La Matemática, 12 al 16(Extraordinario), 89–107. https://funes.uniandes.edu.co/18623/1/Paredes2007Sistemas.pdf

Pope, S. (2002). The use of origami in the teaching of geometry. Proceedings of the British Society for Research into Learning Mathematics, 22(3), 67–73. https://www.academia.edu/478693/The_Use_of_Origami_in_the_Teaching_of_Geometry

Robichaux, R., & Rodrigue, P. (2003). Using Origami to Promote. The National Council of Teachers of Mathematics. https://doi.org/10.5951/MTMS.9.4.0222

Salvador, A., & Molero, M. (2019). La enseñanza de la geometría vista por Grace Chisholm Young. https://www.sinewton.org/numeros

Shumakov, K., & Shumakov, Y. (1998). THE “FOLDING-METHOD” A METHOD OF BILATERAL DEVELOPMENT BASED ON THE ART OF ORIGAMI. https://www.origami.co.il/imgs/site/ntext/5.pdf

Villarroel, S., & Sgreccia, N. (2011). Materiales didácticos concretos en Geometría en primer año de Secundaria. Números, 78, 73–94. https://www.sinewton.org/numeros

Wares, A. (2011). Using origami boxes to explore concepts of geometry and calculus. International Journal of Mathematical Education in Science and Technology, 42(2), 264–272. https://doi.org/10.1080/0020739X.2010.519797

Wares, A. (2013). An application of the theory of multiple intelligences in mathematics classrooms in the context of origami. International Journal of Mathematical Education in Science and Technology, 44(1), 122–131. https://doi.org/10.1080/0020739X.2012.662297

Wares, A. (2016a). Mathematical thinking and origami. International Journal of Mathematical Education in Science and Technology, 47(1), 155–163. https://doi.org/10.1080/0020739X.2015.1070211

Wares, A. (2016b). The Joy of Paper Folding. The Mathematics Teacher, 110(3), 240. https://doi.org/10.5951/mathteacher.110.3.0240

Wares, A. (2019a). Origami & Geometry. The Scottish Mathematical Council, 49. https://drive.google.com/file/d/1IdP9ZS431llwA6efOBQfcgPyTv8v68zv/view

Wares, A. (2019b). Paper folding and trigonometric ratios. International Journal of Mathematical Education in Science and Technology, 50(4), 636–641. https://doi.org/10.1080/0020739X.2018.1500655

Wares, A. (2020). Mathematical art and artistic mathematics. International Journal of Mathematical Education in Science and Technology, 51(1), 152–156. https://doi.org/10.1080/0020739X.2019.1577996

Wares, A., & Elstak, I. (2017). Origami, geometry and art. International Journal of Mathematical Education in Science and Technology, 48(2), 317–324. https://doi.org/10.1080/0020739X.2016.1238521

Weckbacher, L. M., & Okamoto, Y. (2018). Predictability of Visual Processes on Performance in Geometry. Journal of Education and Learning, 7(6). https://doi.org/10.5539/jel.v7n6p25

Williford, H. (1971). A STUDY OF TRANSFORMATIONAL GEOMETRY INSTRUCTION IN THE PRIMARY GRADES VIEW C I OPINIONS STATED DO NOT PIECES, SAAILY REPRESENT OFF:CIAL OFFICE OF E OLP, CATiO:i POSPTION OR POLICY. https://files.eric.ed.gov/fulltext/ED047961.pdf

Yueying Liu. (2019). Scholarship at UWindsor A Comparison Study of Using Origami as a Teaching Tool in Middle-School Mathematics Class in North America and China. https://scholar.uwindsor.ca/major-papershttps://scholar.uwindsor.ca/major-papers/86

Zorín, B. (2013). Geometric Transformations in Middle School Mathematics Textbooks. Journal of Chemical Information and Modeling, 53(9), 1689–1699. https://doi.org/10.1017/CBO9781107415324.004

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Descargas

Los datos de descarga aún no están disponibles.